Degenerate n-doping of few-layer transition metal dichalcogenides by potassium.
نویسندگان
چکیده
We report here the first degenerate n-doping of few-layer MoS2 and WSe2 semiconductors by surface charge transfer using potassium. High-electron sheet densities of ~1.0 × 10(13) cm(-2) and 2.5 × 10(12) cm(-2) for MoS2 and WSe2 are obtained, respectively. In addition, top-gated WSe2 and MoS2 n-FETs with selective K doping at the metal source/drain contacts are fabricated and shown to exhibit low contact resistances. Uniquely, WSe2 n-FETs are reported for the first time, exhibiting an electron mobility of ~110 cm(2)/V·s, which is comparable to the hole mobility of previously reported p-FETs using the same material. Ab initio simulations were performed to understand K doping of MoS2 and WSe2 in comparison with graphene. The results here demonstrate the need of degenerate doping of few-layer chalcogenides to improve the contact resistances and further realize high performance and complementary channel electronics.
منابع مشابه
Patterning Superatom Dopants on Transition Metal Dichalcogenides.
This study describes a new and simple approach to dope two-dimensional transition metal dichalcogenides (TMDCs) using the superatom Co6Se8(PEt3)6 as the electron dopant. Semiconducting TMDCs are wired into field-effect transistor devices and then immersed into a solution of these superatoms. The degree of doping is determined by the concentration of the superatoms in solution and by the length ...
متن کاملDesign of Biosensors Based Transition-Metal Dichalcogenide for DNA-base Detection: A First-Principles Density Functional Theory Study
The main function purpose of nanobiosensors is to sense a biologically specific material and the kind of sensing platform and doping engineering has been an emerging topic and plays an important role in monolayer molybdenum disulfide (mMoS2). In this paper, we theoretically reveal the electronic structures of mMoS2 doped by 3d transition metals. Furthermore, adsorption of nucleic acid [Adenine ...
متن کاملAn origin of unintentional doping in transition metal dichalcogenides: the role of hydrogen impurities.
We theoretically elucidate the origin of unintentional doping in two-dimensional transition-metal dichalcogenides (TMDs), which has been consistently reported by experiment, but which still remains unclear. Our explanation is based on the charge transfer between TMDs and the underlying SiO2 in which hydrogen impurities with a negative-U property pin the Fermi level of the SiO2 as well as adjace...
متن کاملThree-fold rotational defects in two-dimensional transition metal dichalcogenides
As defects frequently govern the properties of crystalline solids, the precise microscopic knowledge of defect atomic structure is of fundamental importance. We report a new class of point defects in single-layer transition metal dichalcogenides that can be created through 60° rotations of metal-chalcogen bonds in the trigonal prismatic lattice, with the simplest among them being a three-fold s...
متن کاملAir stable p-doping of WSe2 by covalent functionalization.
Covalent functionalization of transition metal dichalcogenides (TMDCs) is investigated for air-stable chemical doping. Specifically, p-doping of WSe(2) via NOx chemisorption at 150 °C is explored, with the hole concentration tuned by reaction time. Synchrotron based soft X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) depict the formation of various WSe(2-x-y)O(x)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nano letters
دوره 13 5 شماره
صفحات -
تاریخ انتشار 2013